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Abstract. Scattering by an elliptic cylinder is considered. Asymptotic expansions for Regge
poles and resonances are derived from the uniform asymptotic expansions of Mathieu functions
and modified Mathieu functions constructed by applying the Langer–Olver method. In addition,
asymptotic expansions for resonances are exponentially improved by emphasizing the role of the
symmetries of the scatterer. The splitting up of resonances is then explained in terms of the
symmetry breaking O(2) −→ C2v .

1. Introduction

In the elliptic cylinder geometry, the Helmholtz equation can be solved by separation of
variables and its general solution then constructed in terms of Mathieu functions and modified
Mathieu functions [1–3]. As a consequence, the problems of diffraction and scattering of
waves by elliptic cylinders (see, for example, [4] for a review) can be solved exactly and
therefore have attracted wide attention in the context of theoretical and technical applications.
Indeed,

• the elliptic cylinder is an obvious generalization of the circular cylinder and a very
particular but non-trivial case of the convex cylinder. Because its cross section can be
modified by changing its axial ratio, it can be used to approximate a great variety of
geometrical shapes;

• various approximation techniques (see [4] and references therein) can be tested by
comparison with the exact theory. In particular, scattering has been studied with the
help of the Keller geometrical theory of diffraction [5–8], developed in the context of a
convex cylinder with arbitrary variable curvature. The solution thus obtained has been
compared with the leading term of the asymptotic expansion of the exact solution [9];

• scattering can be used in connection with semiclassical quantization of billiards from the
inside–outside duality (see [10] for a review) and, in particular, in order to obtain the
spectrum of the quantum elliptic billiard.

Scattering by an elliptic cylinder is considered here by emphasizing the role of the
symmetries of the scatterer. Symmetry considerations greatly simplify the mathematical
analysis of a scattering problem. For example, in the case of a circular cylinder, the invariance
of the Helmholtz equation under the continuous group O(2) (i.e. under rotations about the
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cylinder axis) leads to the search for mode solutions of the form f (ρ) exp(±inϕ) (here ρ

and ϕ, respectively, denote the radial and angular coordinates of the polar coordinate system
defined with respect to the cylinder axis; see figure 1). This is directly linked to the following
mathematical result: the functions exp(±inθ), with n ∈ N

∗ fixed, form a basis for a two-
dimensional representation of O(2). Consequently, resonances of the circular cylinder are
twofold degenerate. In the elliptic cylinder case, the invariance of the circular cylinder under
the continuous group O(2) is broken. Even so, the system is invariant under four symmetry
transformations (see figure 3):

(a) E, the identity transformation;
(b) C2, the rotation through π about the Oz-axis of the cylinder;
(c) πx , the mirror reflection in the plane Oxz; and
(d) πy , the mirror reflection in the plane Oyz.

These four transformations form the finite group of order four labelled C2v in the mathematical
literature [11]. Four one-dimensional irreducible representations labelled A1, A2, B1 and B2

are associated with this symmetry group [11] and the S-matrix can be expanded over these
irreducible representations. Consequently, each resonance of the circular cylinder is split up
into two new distinct resonances. In the literature on scattering by an elliptic cylinder, symmetry
considerations are implicitly used as a consequence of the symmetries of the ordinary Mathieu
equation. The separation of its solutions into even functions of period π , even functions of
period 2π , odd functions of period π and odd functions of period 2π (see [1–3]) corresponds to
the separation into functions belonging in the representations A1, B1, A2 and B2, respectively.

It should be noted that in the context of scattering by simple shapes, the splitting up of
resonances has been observed numerically by Moser and Überall [12, 13], but these authors
provide neither any analytic description nor any explanation of the phenomenon. In the context
of quantum billiards, the splitting up of resonances, linked to the breakdown of a symmetry
and to quantum tunnelling, has been noted by several authors (see, for example, [14] and
references therein). Splitting up for the elliptic quantum billiard has also been considered
long ago [15] and has recently been the subject of new investigations [16, 17] in the context
of the semiclassical quantization à la Einstein–Brillouin–Keller (EBK). In these papers, it is
also shown that the energy splitting is an exponentially small term which can be recovered by
using uniform asymptotic expansions for the solutions of the Mathieu equation.

In the present paper we are mainly concerned with the resonances of an elliptic cylinder.
We only consider the Dirichlet boundary condition on the surface of the scatterer. Such a
boundary condition corresponds to particle scattering by hard objects in quantum mechanics,
ultrasonic wave scattering by soft objects in acoustics and microwave scattering by metallic
conductors in electromagnetism. More precisely, we shall derive exponentially improved
asymptotic expansions for the poles of the S-matrix for the external problem. Our method is
the following.

• We first derive the diffractive part of the Green function of the problem as a sum over
the Regge poles of the S-matrix. In order to do that, we use a simplified version of the
Sommerfeld–Watson transformation [18, 19] developed by Levy and Keller [9, 20] and
Hansen [21].

• We then expand it over the four irreducible representations A1, A2, B1 and B2 of the
symmetry group C2v of the scatterer. Consequently, resonances of the elliptic cylinder
appear as solutions of four transcendental equations involving ordinary Mathieu functions,
each one associated with an irreducible representation. Resonances are then naturally
classified according to these irreducible representations. It should be noted that the
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asymptotic expansions for the resonances are obtained by solving perturbatively the four
transcendental equations. The splitting corresponds to an exponentially small term which
lies beyond all orders of the asymptotic expansions and can be captured by carefully taking
into account Stokes’ phenomenon. (For modern aspects of asymptotics beyond all orders
and of the Stokes phenomenon, we refer to [22–24].)

• Finally, from the uniform asymptotic expansions of Mathieu functions and of modified
Mathieu functions obtained by applying the Langer–Olver method (see [25] and
references therein for that method), we obtain asymptotic expansions for Regge poles
and exponentially improved asymptotic expansions for resonances.

More precisely, in section 2, we consider the simple example of the circular cylinder in
order to present our method, and to gather and improve results scattered in the literature [26, 27].
The diffractive part of the Green function of the external problem is constructed. By using the
method of Streifer and Kodis [27], asymptotic expansions for Regge poles are derived from the
uniform asymptotic expansions of Hankel functions [2, 28]. Finally, asymptotic expansions
for the resonances are obtained. In section 3, we apply our method to the elliptic cylinder.
We construct the diffractive part of the Green function, and we establish the transcendental
equations that must be satisfied by the Regge poles and by the resonances. We then solve
these equations and we derive asymptotic expansions for Regge poles and resonances by
using uniform asymptotic expansions for Mathieu and modified Mathieu functions. In the
limit of the circular cylinder, we recover the results of section 2. We test our formulae by
comparing the results given by the asymptotic expansions with the exact results determined by
solving numerically the Helmholtz equation together with the Sommerfeld radiation condition
at infinity and the Dirichlet boundary condition on the scatterer. In appendix A, we establish
orthonormalization relations for the radial modes arising in the construction of the diffracted
Green functions. In appendix B, some symmetry properties of the solutions of the ordinary
Mathieu equation are displayed. Finally, in appendices C and D, we derive various asymptotic
expansions for Mathieu and modified Mathieu functions.

It should be noted that all the numerical calculations and some tedious algebraic ones have
been performed with Mathematica [32].

2. The example of the circular cylinder

2.1. Construction of the diffracted Green function

Scattering by an infinite circular cylinder of radius a is considered. The geometry of the
problem, as well as the notation used are shown in figure 1. The cylindrical coordinate system
(ρ, ϕ, z) is defined with respect to the symmetry axis of the cylinder.

Figure 1. Geometry of the circular cylinder.
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The scattering problem is assumed to be independent of the z-coordinate, and thus reduces
to a two-dimensional one. Furthermore, an exp(−iωt) time dependence is implicitly assumed.
The corresponding Green function G

(
ρ, ϕ | ρ ′, ϕ′) is the symmetric solution of the Helmholtz

equation

1

ρ

∂

∂ρ

(
ρ
∂G

∂ρ

)
+

1

ρ2

∂2G

∂ϕ2
+ k2G = − 1

ρ
δ(ρ − ρ ′)δ(ϕ − ϕ′) (1)

subject to the Dirichlet boundary condition on the scatterer, together with the Sommerfeld
radiation condition at infinity. Standard techniques yield a series representation of the solution:

G
(
ρ, ϕ | ρ ′, ϕ′) = 1

8 i
+∞∑
n=0

γn

[
H(2)

n (kρ<) − H(2)
n (ka)

H
(1)
n (ka)

H (1)
n (kρ<)

]
H(1)

n (kρ>) cos
[
n(ϕ − ϕ′)

]
.

(2)

Here the Neumann factor is defined by γ0 = 1 and γn = 2 if n �= 0, H(1)
n and H(2)

n denote,
respectively, the Hankel functions of the first and second kinds [2], and ρ< = inf(ρ, ρ ′)
while ρ> = sup(ρ, ρ ′). Scattering resonances of the circular cylinder appear as poles of the
Green function (or equivalently of the S-matrix), i.e. as the reduced wavenumbers (ka)n, with
 = 1, . . . ,+∞, solving

H(1)
n (ka) = 0 (3)

and lying in the fourth quadrant of the complex ka-plane. It should be noted that there is no
resonance associated with n = 0.

The partial-wave expansion (2) is the exact solution of the problem, but for large ka,
it converges very slowly. Furthermore, it does not provide any physical interpretation of the
scattering. The well known Sommerfeld–Watson transformation [18, 19] permits one to obtain
an alternative representation which displays the various physical (geometrical and diffractive)
contributions. More precisely, the expression (2) can be converted into a contour integral in
the complex plane (n ∈ N → ν ∈ C), with the contour encircling the real positive axis. The
deformation of that contour permits one to extract the purely geometrical contribution as well
as the diffracted Green function. This one appears as a discrete sum over Regge poles, i.e.
the particular values ν ( ∈ N

∗) of ν, lying in the first quadrant of the complex ν-plane, and
satisfying the equation

H(1)
ν (ka) = 0. (4)

In the context of scattering by a sphere, Sommerfeld also constructed the diffracted Green
function in a more economical way [19] (see [9, 20, 21] for refinements). His method can be
applied to scattering by a circular cylinder, and leads us to seek the diffracted Green function
Gd in the form

Gd(ρ, ϕ) =
+∞∑
 =1

H(1)
ν 

(kρ)V (ϕ). (5)

Here, in order to simplify our notation, we have suppressed any reference to the coordinates
(ρ ′, ϕ′) of the source point. In fact, the function V (ϕ) implicitly depends on these coordinates,
and Gd is assumed to be symmetrized under the exchange (ρ, ϕ) ↔ (ρ ′, ϕ′). Gd then
automatically satisfies the radiation condition at infinity and the Dirichlet boundary condition
on the cylinder. Moreover, it must also satisfy the Helmholtz equation (1), which becomes
+∞∑
 =1

{
1

ρ

d

dρ

(
ρ

dH(1)
ν 

(kρ)

dρ

)
+ k2H(1)

ν 
(kρ)

}
V (ϕ) +

1

ρ2
H(1)

ν 
(kρ)V ′′

 (ϕ)

= − 1

ρ
δ(ρ − ρ ′)δ(ϕ − ϕ′). (6)
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It should be noted that the ‘eigenfunctions’ involved in the expansion (5) do not constitute
a complete set of solutions of the boundary value problem under consideration. As a
consequence, the discrete sum (5) does not include the geometrical contributions, and so
reduces to the exact solution (2) only in the shadow region. Nevertheless, scattering resonances
will be deduced from the expression (5), because they are associated with the diffraction
phenomenon.

Let us now determine the functionV (ϕ). SinceH(1)
ν 

(kρ) is a solution of Bessel’s equation

ρ
d

dρ

(
ρ

dU

dρ

)
+
(
k2ρ2 − ν2

)
U(ρ) = 0 (7)

with ν = ν , equation (6) reduces to
+∞∑
 =1

1

ρ
H(1)

ν 
(kρ)

[
V ′′
 (ϕ) + ν2

 V (ϕ)
] = −δ(ρ − ρ ′)δ(ϕ − ϕ′). (8)

We then multiply (8) by H(1)
νm

(kρ) (here νm is a particular Regge pole), and integrate over the
external radial domain ρ ∈ [a,+∞[ which contains ρ ′. The orthonormalization relation (A8)
for Hankel functions permits us to write

V ′′
 (ϕ) + ν2

 V (ϕ) = −H(1)
ν 

(kρ ′)
N (ka)

δ(ϕ − ϕ′). (9)

The solution of equation (9), defined for ϕ ∈ [−π, π ], can be sought in the form

V (ϕ) = '(ϕ′ − ϕ) [A cos ν ϕ + B sin ν ϕ] + '(ϕ − ϕ′) [C cos ν ϕ + D sin ν ϕ] (10)

where ' denotes the Heavyside step function, and A, B, C and D depend on (ρ ′, ϕ′). By
replacing (10) into (9), and then by identifying the terms involving, respectively, δ′(ϕ − ϕ′)
and δ(ϕ − ϕ′), we obtain the following pair of equations:

(A − C) cos ν ϕ
′ + (B − D) sin ν ϕ

′ = 0 (11)

which expresses the continuity of V (ϕ) at ϕ = ϕ′, and

(B − D) cos ν ϕ
′ − (A − C) sin ν ϕ

′ = H(1)
ν 

(kρ ′)
ν N (ka)

(12)

which corresponds to the fact that V ′
 (ϕ) has a jump at ϕ = ϕ′, equal to the right-hand side

of (12). Furthermore, by using the condition that V (ϕ) and V ′
 (ϕ) must be single-valued

functions (they take the same values at ϕ = −π and ϕ = π ), we determine the constants A,
B, C and D, and we obtain

V (ϕ) = − H(1)
ν 

(kρ ′)
2ν N (ka) sin ν π

[
'(ϕ′ − ϕ) cos ν (π − ϕ′ + ϕ)

+'(ϕ − ϕ′) cos ν (π + ϕ′ − ϕ)
]
. (13)

Finally, by replacing (13) into (5), and by taking into account the expression (A12) of the
normalization factor N (ka), we obtain for the diffracted Green function

Gd(ρ, ϕ | ρ ′, ϕ′) = 1
4 iπ

+∞∑
 =1

H(2)
ν 

(ka)H (1)
ν 

(kρ ′)H (1)
ν 

(kρ) cos ν (ϕ′ − ϕ ± π)[
∂H

(1)
ν (ka)/∂ν

]
ν=ν 

sin ν π
(14)

where the upper (respectively, the lower) sign applies when ϕ > ϕ′ (respectively, ϕ < ϕ′).
Here, the reference to the coordinates (ρ ′, ϕ′) of the source point as well as the symmetry of
Gd under the exchange (ρ, ϕ) ↔ (ρ ′, ϕ′) appear explicitly.



3184 S Ancey et al

2.2. Asymptotic expansions for Regge poles

Now, we shall determine asymptotic expansions (for ka → ∞) for the Regge poles ν (ka), by
solving equation (4). With this aim in mind, we need the uniform asymptotic expansion for
the Hankel function of the first kind [2, 28] obtained by using the Langer–Olver method [25]
and which is valid for |ν| → ∞,

H(1)
ν (kρ) = 2

√
2

(
ν2ζ

ν2 − k2ρ2

)1/4 {e−iπ/3Ai
(
e2iπ/3ν2/3ζ

)
ν1/3

∞∑
s=0

As(ζ )

ν2s

+
eiπ/3Ai′

(
e2iπ/3ν2/3ζ

)
ν5/3

∞∑
s=0

Bs(ζ )

ν2s

}
. (15)

Here, ζ is given by

2
3ζ

3/2 = −
∫ kρ/ν

1

(
1 − z2

z2

)1/2

dz = ln

(
ν +

(
ν2 − k2ρ2

)1/2

kρ

)
−
(
ν2 − k2ρ2

ν2

)1/2

(16)

and is chosen so that it is real when ν is real and positive, and kρ/ν ∈ [0, 1]. Furthermore,
the coefficients As(ζ ) and Bs(ζ ) are defined by recurrence relations and are given explicitly
in [2, 28]. In particular, we have

A0(ζ ) = 1 (17a)

B0(ζ ) = − 5

48ζ 2
+

1

24ζ 1/2

[
5ν3(

ν2 − k2ρ2
)3/2 − 3ν(

ν2 − k2ρ2
)1/2

]
. (17b)

Let us first consider the leading term of (15) where we take ρ = a. Thus we have

H(1)
ν (ka) = 2

√
2

(
ν2ζ

ν2 − k2a2

)1/4 e−iπ/3Ai
(
e2iπ/3ν2/3ζ

)
ν1/3

[
1 + O

|ν|→∞

(
1

ν

)]
. (18)

In the context of this approximation, equation (4) reduces to Ai
(
e2iπ/3ν2/3ζ

) ≈ 0. By
introducing the real negative zeros x ( ∈ N

∗) of the Airy function Ai(x) [2], we see that the
Regge poles satisfy

νζ 3/2 ≈ −x
3/2
 . (19)

Equation (19) implies that 2
3ζ

3/2 = O|ν|→∞(1/ν). Thus, it follows from (16) that ν ≈ ka.
Now, equation (19) can be solved perturbatively, and we find, to this degree of approximation,

ν (ka) ≈ ν
approx
 (ka) = ka − eiπ/3x 

(
1
2ka

)1/3
+

e2iπ/3x2
 

60

(
1
2ka

)−1/3 − x3
 

1400

(
1
2ka

)−1

−281eiπ/3x4
 

4536 000

(
1
2ka

)−5/3 − 73 769e2iπ/3x5
 

10 478 160 000

(
1
2ka

)−7/3

+
93 617x6

 

100 900 800 000

(
1
2ka

)−3
+ O

ka→∞

[
(ka)−11/3

]
. (20)

Now, we consider the two first leading terms of (15):

H(1)
ν (ka) = 2

√
2

(
ν2ζ

ν2 − k2a2

)1/4 {e−iπ/3Ai
(
e2iπ/3ν2/3ζ

)
ν1/3

+
eiπ/3Ai′

(
e2iπ/3ν2/3ζ

)
ν5/3

B0(ζ )

}[
1 + O

|ν|→∞

(
1

ν2

)]
. (21)
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To this new degree of approximation, the condition H(1)
ν (ka) = 0 can be written as

Ai
[
e2iπ/3ν2/3ζ

]
Ai′

[
e2iπ/3ν2/3ζ

] ≈ −e2iπ/3ν−4/3B0(ζ ). (22)

Regge poles can then be sought as the solutions of

νζ 3/2 ≈ −(x + δx)3/2 (23)

where δx can be obtained from (22). By expanding in (22) Ai(x) and Ai′(x) in Taylor series
about x , we obtain

δx = −e2iπ/3ν−4/3B0(ζ ). (24)

Equation (23) can be solved step by step, and we finally obtain, for Regge poles, the following
asymptotic expansions:

ν (ka) = ka − eiπ/3x 
(

1
2ka

)1/3
+ 1

60 e2iπ/3x2
 

(
1
2ka

)−1/3 − x3
 + 10

1400

(
1
2ka

)−1

−eiπ/3
(
281x4

 + 10 440x 
)

4536 000

(
1
2ka

)−5/3

−e2iπ/3
(
73 769x5

 + 6624 900x2
 

)
10 478 160 000

(
1
2ka

)−7/3

+
93 617x6

 + 16 495 400x3
 − 1744 600

100 900 800 000

(
1
2ka

)−3
+ O

ka→+∞

[
(ka)−11/3

]
. (25)

Up to this order of the asymptotic expansion (25), the terms corresponding to s = 0 into
(15) are sufficient. Moreover, in comparison with the expansion for Regge poles obtained by
Streifer and Kodis [27], it should be noted that (25) includes two additional terms.

2.3. Asymptotic expansions for resonances

It appears from the expression for the diffracted Green function (14) that resonances are
obtained by solving sin [πν (ka)] = 0. The condition for resonance can then be expressed as

ν (ka) = n (26)

with n ∈ N
∗. By taking for ν (ka) its asymptotic expansion (25) and then by inverting

equation (26), we obtain

(ka)n, = n + eiπ/3x 
(

1
2n
)1/3

+
3e2iπ/3x2

 

20

(
1
2n
)−1/3

+
x3
 + 10

1400

(
1
2n
)−1

+
eiπ/3

(
479x4

 − 40x 
)

504 000

(
1
2n
)−5/3 − e2iπ/3

(
20 231x5

 + 55100x2
 

)
129 360 000

(
1
2n
)−7/3

+ O
n→+∞

(
n−3

)
. (27)

The previous expression can be recovered from the uniform asymptotic expansions for the
zeros of the Hankel function H(1)

ν (z) given by Olver [28].
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3. Diffraction by an elliptic cylinder

3.1. Geometry of the scatterer, symmetry considerations and the exact Green function

Let us now consider scattering by an infinite cylinder of elliptic cross section. This problem
is assumed to be independent of the z-coordinate along the axis Oz of the cylinder, and thus
reduces to a two-dimensional one. The geometry of the scatterer is then well described by the
elliptic coordinates (ξ, η) related to the rectangular coordinates (x, y) by the transformation
(see figure 2)

x = c cosh ξ cos η y = c sinh ξ sin η. (28)

where 0 � ξ < ∞ and −π � η � π . The equation ξ = ξ0 defines the surface of an elliptic
cylinder whose eccentricity is 1/ cosh ξ0. The limiting cases ξ0 = 0 and ξ0 → +∞ correspond,
respectively, to the strip and to the circular cylinder [2, 3].

It should be noted that the transition from the circular cylinder to the elliptic one
corresponds to the breaking of the O(2)-symmetry (invariance under any rotation about the
Oz-axis). However (see figure 3), the elliptic cylinder remains invariant under four symmetry
transformations: E, the identity transformation (η → η); C2, the rotation through π about the

 

 
 

 

  
  

 

Figure 2. Elliptic coordinates.

  

  

Figure 3. Geometry of the elliptic cylinder.
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Table 1. Character table of C2v .

C2v : E C2 πx πy

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

Oz-axis (η → π + η); πx , the mirror reflection in the plane Oxz (η → −η); πy , the mirror
reflection in the plane Oyz (η → π − η). These four transformations form the finite group
C2v , which is the symmetry group of the scatterer.

Four one-dimensional irreducible representations labelledA1,A2,B1 andB2 are associated
with the symmetry group C2v [11]. In the representation A1 (respectively, A2, B1 and B2), the
group elementsE, C2, πx andπy are represented by 1×1 matrices given in theA1 (respectively,
A2, B1 and B2) row of the character table (table 1). Consequently, any function V of the
‘angular’ coordinate η can be expanded over these four irreducible representations as

V (η) = V (A1)(η) + V (A2)(η) + V (B1)(η) + V (B2)(η) (29)

with

EV (A1) = V (A1) C2V
(A1) = V (A1) πxV

(A1) = V (A1) πyV
(A1) = V (A1)

(30a)

EV (A2) = V (A2) C2V
(A2) = V (A2) πxV

(A2) = −V (A2) πyV
(A2) = −V (A2)

(30b)

EV (B1) = V (B1) C2V
(B1) = −V (B1) πxV

(B1) = V (B1) πyV
(B1) = −V (B1)

(30c)

EV (B2) = V (B2) C2V
(B2) = −V (B2) πxV

(B2) = −V (B2) πyV
(B2) = V (B2).

(30d)

Furthermore, the components V (A1), V (A2), V (B1) and V (B2) satisfying (30) are given explicitly
by

V (A1)(η) = 1
4

(
E + C2 + πx + πy

)
V (η) (31a)

V (A2)(η) = 1
4

(
E + C2 − πx − πy

)
V (η) (31b)

V (B1)(η) = 1
4

(
E − C2 + πx − πy

)
V (η) (31c)

V (B2)(η) = 1
4

(
E − C2 − πx + πy

)
V (η). (31d)

The Green functionG(ξ, η | ξ ′, η′) associated with the scattering problem is the symmetric
solution of the Helmholtz equation in elliptic coordinates,

∂2G

∂ξ 2
+
∂2G

∂η2
+ (kc)2(cosh2 ξ − cos2 η)G = −δ(ξ − ξ ′)δ(η − η′) (32)

still subject to the Dirichlet boundary condition on the scatterer together with the Sommerfeld
radiation condition at infinity. It can be expanded over the representations A1, A2, B1 and B2

as

G(ξ, η | ξ ′, η′) = G(A1)(ξ, η | ξ ′, η′) + G(A2)(ξ, η | ξ ′, η′) + G(B1)(ξ, η | ξ ′, η′)

+G(B2)(ξ, η | ξ ′, η′) (33)
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with

G(A1)(ξ, η | ξ ′, η′) = 1
4 i

+∞∑
r=0

[
Mc

(4)
2r (ξ<, θ) − Mc

(4)
2r (ξ0, θ)

Mc
(3)
2r (ξ0, θ)

Mc
(3)
2r (ξ<, θ)

]
Mc

(3)
2r (ξ>, θ)

×ce2r (η, θ) ce2r (η
′, θ) (34a)

G(A2)(ξ, η | ξ ′, η′) = 1
4 i

+∞∑
r=1

[
Ms

(4)
2r (ξ<, θ) − Ms

(4)
2r (ξ0, θ)

Ms
(3)
2r (ξ0, θ)

Ms
(3)
2r (ξ<, θ)

]
Ms

(3)
2r (ξ>, θ)

×se2r (η, θ) se2r (η
′, θ) (34b)

G(B1)(ξ, η | ξ ′, η′) = 1
4 i

+∞∑
r=0

[
Mc

(4)
2r+1(ξ<, θ) − Mc

(4)
2r+1(ξ0, θ)

Mc
(3)
2r+1(ξ0, θ)

Mc
(3)
2r+1(ξ<, θ)

]
Mc

(3)
2r+1(ξ>, θ)

×ce2r+1(η, θ) ce2r+1(η
′, θ) (34c)

G(B2)(ξ, η | ξ ′, η′) = 1
4 i

+∞∑
r=0

[
Ms

(4)
2r+1(ξ<, θ) − Ms

(4)
2r+1(ξ0, θ)

Ms
(3)
2r+1(ξ0, θ)

Ms
(3)
2r+1(ξ<, θ)

]
Ms

(3)
2r+1(ξ>, θ)

×se2r+1(η, θ) se2r+1(η
′, θ). (34d)

Here, ξ< = inf(ξ, ξ ′) and ξ> = sup(ξ, ξ ′), while θ = (kc/2)2. The mode solutions
Mc(3)n (ξ, θ) cen(η, θ), Ms(3)n (ξ, θ) sen(η, θ), Mc(4)n (ξ, θ) cen(η, θ) and Ms(4)n (ξ, θ) sen(η, θ)

appearing in expressions (34) are defined in [2]. They arise when one seeks the solutions
of the Helmholtz equation (2 + k2)3(ξ, η) = 0 by separation of variables, i.e. in the form
3(ξ, η) = U(ξ)V (η). In this case, U(ξ) and V (η), respectively, satisfy the modified Mathieu
equation

U ′′(ξ) − (kc)2
(
b2 − cosh2 ξ

)
U(ξ) = 0 (35)

and the ordinary Mathieu equation

V ′′(η) + (kc)2
(
b2 − cos2 η

)
V (η) = 0. (36)

For a given kc, there exists a countably infinite set
(
b(A1)
r

)
r∈N

of characteristic values of the
separation constant b which yields solutions of (36) belonging in the irreducible representation
A1 of C2v . More precisely, for a given r ∈ N, the characteristic value b(A1)

r is associated with
the Mathieu function ce2r which forms a basis for the one-dimensional representation A1.
Any solution of equation (35), where we take b = b(A1)

r , can then be written as a linear
combination of the two modified Mathieu functions Mc

(3)
2r (outgoing solution) and Mc

(4)
2r

(incoming solution). Similarly, there exist three other countably infinite sets
(
b(A2)
r

)
r∈N∗ ,(

b(B1)
r

)
r∈N

and
(
b(B2)
r

)
r∈N

of characteristic values of the separation constant b associated with
solutions of (36) belonging, respectively, in the irreducible representations A2, B1 and B2.
The corresponding Mathieu functions and modified Mathieu functions are given in table 2.

Furthermore, it should be noted that our notation for characteristic values are related to
the usual ones [2] by

b(A1)
r (kc) =

(
a2r ((kc/2)2)

(kc)2
+

1

2

)1/2

b(B1)
r (kc) =

(
a2r+1((kc/2)2)

(kc)2
+

1

2

)1/2

b(A2)
r (kc) =

(
b2r ((kc/2)2)

(kc)2
+

1

2

)1/2

b(B2)
r (kc) =

(
b2r+1((kc/2)2)

(kc)2
+

1

2

)1/2

.

(37)
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Table 2. Irreducible representations of C2v and corresponding Mathieu functions.

Characteristic Ordinary Outgoing modified Incoming modified
value Mathieu function Mathieu function Mathieu function

A1 b
(A1)
r (kc) ce2r

(
η, (kc/2)2

)
Mc

(3)
2r

(
ξ, (kc/2)2

)
Mc

(4)
2r

(
ξ, (kc/2)2

)
A2 b

(A2)
r (kc) se2r

(
η, (kc/2)2

)
Ms

(3)
2r

(
ξ, (kc/2)2

)
Ms

(4)
2r

(
ξ, (kc/2)2

)
B1 b

(B1)
r (kc) ce2r+1

(
η, (kc/2)2

)
Mc

(3)
2r+1

(
ξ, (kc/2)2

)
Mc

(4)
2r+1

(
ξ, (kc/2)2

)
B2 b

(B2)
r (kc) se2r+1

(
η, (kc/2)2

)
Ms

(3)
2r+1

(
ξ, (kc/2)2

)
Ms

(4)
2r+1

(
ξ, (kc/2)2

)

Scattering resonances of the elliptic cylinder appear as the poles of the Green function (33)
(or equivalently of the S-matrix), i.e. as the reduced wavenumbers kc solving

Mc
(3)
2r (ξ0, (kc/2)2) = 0 r ∈ N (A1) (38a)

Ms
(3)
2r (ξ0, (kc/2)2) = 0 r ∈ N

∗ (A2) (38b)

Mc
(3)
2r+1(ξ0, (kc/2)2) = 0 r ∈ N (B1) (38c)

Ms
(3)
2r+1(ξ0, (kc/2)2) = 0 r ∈ N (B2) (38d)

and lying in the fourth quadrant of the complex kc-plane. It should be noted that in the
representation A1, there is no resonance associated with r = 0.

The Green function (2) corresponding to scattering by a circular cylinder of radius a can be
recovered from the Green function (33). This can be done by taking both the limits ξ0 → +∞
and kc → 0, while keeping (kc/2) exp ξ0 constant and equal to the reduced wavenumber ka.
Indeed:

(a) For large values of ξ , ρ = (x2 + y2)1/2 is approximately (c/2) exp ξ (see (28)) and the
modified Mathieu equation (35) reduces to the Bessel equation (7), with

ν = kc
(
b2 − 1

2

)1/2
. (39)

(b) Then, for kc → 0, we can make the substitution η → ϕ in the Mathieu equation (36),
which reduces to V ′′(ϕ) + ν2V (ϕ) = 0, and which admits periodic solutions only for
ν = n ∈ N.

From these remarks and the definitions of the Mathieu and modified Mathieu functions [2],
we obtain the following correspondences:

Mc(3)n (ξ, (kc/2)2) ∼ Ms(3)n (ξ, (kc/2)2) −→ H(1)
n (kρ) (40a)

Mc(4)n (ξ, (kc/2)2) ∼ Ms(4)n (ξ, (kc/2)2) −→ H(2)
n (kρ) (40b)

cen(η, (kc/2)2) −→
√

1
2γn cos nϕ (40c)

sen(η, (kc/2)2) −→ sin nϕ. (40d)

Thus, by substituting equations (40) in the Green function (33), we recover (2).
The four equations (38a)–(38d) provide an algebraic classification of resonances. They

can be solved numerically by using a shooting method. Since the modified Mathieu functions
are not built in Mathematica, this is a time-consuming task. Indeed, in order to scan suitable
regions of the complex kc-plane, we need to construct, with great accuracy and for a great
number of kc, outgoing solutions of the modified Mathieu equation (35). In figure 4 we present
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Figure 4. Resonances in the complex ka-plane. ◦, circular cylinder; ∗, A1; •, A2; ×, B1; +, B2.

the locations of resonances in the complex ka-plane, where the reduced wavenumber ka is
defined by ka = (kc/2) exp ξ0. Scattering resonances are plotted for the following values of
ξ0: ξ0 → ∞, ξ0 = 1, ξ0 = 0.5, ξ0 = 0.2, ξ0 = 0.1 and ξ0 = 0.05. The splitting up of
resonances linked to the breaking of the O(2)-symmetry is thus displayed.

3.2. Construction of the diffracted Green function

As for the case of the circular cylinder in subsection 2.1, we shall provide the expression for the
diffracted Green function associated with scattering by an elliptic cylinder. We first extend the
approach of Levy [9] and then expand the diffracted Green function over the representations
of C2v .

Regge poles of the elliptic cylinder are the particular values b ( ∈ N
∗) of the separation

constant b, lying in the first quadrant of the complex b-plane, and solving the equation

U(1)(ξ0, b) = 0 (41)

where U(1)(ξ, b) is an outgoing solution of equation (35). The diffracted Green function is
then sought as a sum over the Regge poles b , in the form

Gd(ξ, η) =
+∞∑
 =1

U
(1)
 (ξ)V (η). (42)

Here, in order to simplify our notation, any reference to the coordinates (ξ ′, η′) of the source
point has been omitted, the dependence on kc is implicitly assumed, while the dependence
on the Regge pole b is expressed by using the index  . Because Gd is assumed to be
symmetrized under the exchange (ξ, η) ↔ (ξ ′, η′), it automatically satisfies the boundary
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conditions at infinity and on the cylinder. Now, by substituting (42) into (32), and by using
the orthonormalization relation (A13) for the functions U(1)

 (ξ), we find that V (η) satisfies

V ′′
 (η) + (kc)2(b2

 − cos2 η)V (η) = −U
(1)
 (ξ ′)
N (ξ0)

δ(η − η′) (43)

where N (ξ0) is defined by (A18). Let us now consider the two linearly independent solutions
c(η, b ) = c (η) and s(η, b ) = s (η) of equation (36), normalized in such a way that (see
also (B1))

c (0) = 1 c′
 (0) = 0

s (0) = 0 s ′
 (0) = 1.

(44)

We then assume that any solution of (43) can be written in the form

V (η) = '(η′ − η) [Ac (η) + Bs (η)] + '(η − η′) [Cc (η) + Ds (η)]. (45)

By substituting it into (43), and by using the single valuedness of V (η) and V ′
 (η), we identify

the constants A, B, C and D and we obtain

V (η) = U
(1)
 (ξ ′)

2N (ξ0)

{
s ′
 (π)

c′
 (π)

c (η
′) c (η) − c (π)

s (π)
s (η

′) s (η)

+'(η − η′)
[
s (η

′) c (η) − c (η
′) s (η)

]
−'(η′ − η)

[
s (η

′) c (η) − c (η
′) s (η)

]}
. (46)

By using the relations (B4) and (B5), we finally obtain the diffracted Green function as

Gd(ξ, η | ξ ′, η′) =
+∞∑
 =1

U
(1)
 (ξ ′)U(1)

 (ξ)

4N (ξ0)

[
c (η

′ ± π) c (η)

c (π/2) c′
 (π/2)

− s (η
′ ± π) s (η)

s (π/2) s ′
 (π/2)

]
(47)

where the upper (respectively, the lower) signs apply when η > η′ (respectively, η < η′).
Now, we wish to expand the diffracted Green function (47) over the four irreducible

representations of the symmetry group C2v . To carry out this calculation, we consider
η′ ∈ [0, π/2]. From a physical point of view, this restriction does not involve any loss of
generality. Moreover, we limit our study to η ∈ [0, π/2]: the behaviour of the functions G(A1)

d ,
G

(A2)
d , G(B1)

d and G
(B2)
d over the whole range η ∈ [−π, π ] can easily be deduced from their

symmetry properties (30). From definitions (29) and (31), and by using relations (B4) and
(B5), we obtain

Gd(ξ, η | ξ ′, η′) = G
(A1)
d (ξ, η | ξ ′, η′) + G

(A2)
d (ξ, η | ξ ′, η′) + G

(B1)
d (ξ, η | ξ ′, η′)

+G(B2)
d (ξ, η | ξ ′, η′) (48)

with

G
(A1)
d (ξ, η | ξ ′, η′) =

+∞∑
 =1

U
(1)
 (ξ ′)U(1)

 (ξ)

4N (ξ0)

[
s ′
 (π/2)

c′
 (π/2)

c (η>) − s (η>)

]
c (η<) (49a)

G
(A2)
d (ξ, η | ξ ′, η′) = −

+∞∑
 =1

U
(1)
 (ξ ′)U(1)

 (ξ)

4N (ξ0)

[
c (π/2)

s (π/2)
s (η>) − c (η>)

]
s (η<) (49b)

G
(B1)
d (ξ, η | ξ ′, η′) =

+∞∑
 =1

U
(1)
 (ξ ′)U(1)

 (ξ)

4N (ξ0)

[
s (π/2)

c (π/2)
c (η>) − s (η>)

]
c (η<) (49c)

G
(B2)
d (ξ, η | ξ ′, η′) = −

+∞∑
 =1

U
(1)
 (ξ ′)U(1)

 (ξ)

4N (ξ0)

[
c′
 (π/2)

s ′
 (π/2)

s (η>) − c (η>)

]
s (η<). (49d)
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Here, η< = inf
(
η, η′), while η> = sup

(
η, η′). The previous expressions clearly display the

conditions for resonance associated with each irreducible representation of the symmetry group
C2v . More precisely, the transcendental equation c′

 (π/2) = 0 (respectively, s (π/2) = 0,
c (π/2) = 0 and s ′

 (π/2) = 0) provides the resonances in the A1 (respectively, A2, B1 and
B2) representation.

3.3. Asymptotic expansions for Regge poles

In order to determine asymptotic expansions (for kc → ∞) for the Regge poles b (kc), we
have to solve the equation U(1)(ξ0, b) = 0. This will be done by extending the reasoning of
subsection 2.2. Hence we need the uniform asymptotic expansion (C9) (limited to the first
two leading terms) found by using the Langer–Olver method (see appendix C) which reads,
for ξ = ξ0,

U(1)(ξ0, b) = e−iπ/2ζ 1/4
(
b2 − cosh2 ξ0

)−1/4

×
{

Ai
[
e2iπ/3(kc)2/3ζ

]
+ B0(ζ )

e2iπ/3Ai′
[
e2iπ/3(kc)2/3ζ

]
(kc)4/3

}

×
[

1 + O
kc→∞

(
1

(kc)2

)]
. (50)

Here, ζ is given by

2
3ζ

3/2 = −
∫ ξ0

arccosh b

(
b2 − cosh2 u

)1/2
du (51)

and

B0(ζ ) = − 5

48ζ 2
+

√
b2 − 1

12
√
ζ

[
iF
(
iξ0

∣∣1/(1 − b2)
)

(b2 − 1)
− i(2b4 − 3b2 + 1)E

(
iξ0

∣∣1/(1 − b2)
)

2b2(b2 − 1)2

+
(14b4 − 14b2 + 1) sinh 2ξ0 +

(
b2 − 1

2

)
sinh 4ξ0

8b2(b2 − 1)2(b2 − cosh2 ξ0)3/2

]
(52)

where F and E denote the elliptic integrals of the first and second kinds [2], respectively. To
this degree of approximation, the equation U(1)(ξ0, b) = 0 reduces to

Ai
[
e2iπ/3(kc)2/3ζ

]
Ai′

[
e2iπ/3(kc)2/3ζ

] ≈ −e2iπ/3(kc)−4/3B0(ζ ). (53)

Regge poles b (kc) can then be sought as the solutions of

kcζ 3/2 = − (x + δx)3/2 (54)

where the x ( ∈ N
∗) denote, as always, the real negative zeros of the Airy function Ai(x)

and where

δx = −e2iπ/3(kc)−4/3B0(ζ ). (55)
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Equation (54) is solved perturbatively, and we obtain, for Regge poles, the following asymptotic
expansions:

b (kc) = cosh ξ0 − 2−1/3eiπ/3(sinh ξ0)
2/3

(cosh ξ0)1/3
q1,0(x )(kc)

−2/3

+
2−2/3e2iπ/3

60(cosh ξ0)5/3(sinh ξ0)2/3

{
q2,0(x ) + q2,1(x ) cosh 2ξ0

}
(kc)−4/3

+
1

16 800(cosh ξ0)3(sinh ξ0)2

× {
q3,0(x ) + q3,1(x ) cosh 2ξ0 + q3,2(x ) cosh 4ξ0

}
(kc)−2

− 2−1/3eiπ/3

36 288 000(cosh ξ0)13/3(sinh ξ0)10/3

{
q4,0(x ) + q4,1(x ) cosh 2ξ0

+q4,2(x ) cosh 4ξ0 + q4,3(x ) cosh 6ξ0
}
(kc)−8/3

+
2−2/3e2iπ/3

167 650 560 000(cosh ξ0)17/3(sinh ξ0)14/3

×{q5,0(x ) + q5,1(x ) cosh 2ξ0 + q5,2(x ) cosh 4ξ0

+q5,3(x ) cosh 6ξ0 + q5,4(x ) cosh 8ξ0
}
(kc)−10/3

+
1

6457 651 200 000(cosh ξ0)7(sinh ξ0)6

×{q6,0(x ) + q6,1(x ) cosh 2ξ0 + q6,2(x ) cosh 4ξ0

+q6,3(x ) cosh 6ξ0 + q6,4(x ) cosh 8ξ0 + q6,5(x ) cosh 10ξ0
}
(kc)−4

+ O
kc→∞

[
(kc)−14/3

]
. (56)

Here the qi,j (x ) are polynomials of degree i in x , given by

q1,0(x ) = x (57a)

q2,0(x ) = 15x2
 

q2,1(x ) = x2
 

(57b)

q3,0(x ) = 570 + 407x3
 

q3,1(x ) = −980x3
 

q3,2(x ) = −3(10 + x3
 )

(57c)

q4,0(x ) = 90(6840x + 13 711x4
 )

q4,1(x ) = −21(119 880x + 48 037x4
 )

q4,2(x ) = −90(360x − 5641x4
 )

q4,3(x ) = 10 440x + 281x4
 

(57d)
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q5,0(x ) = 3(4557 365 100x2
 + 1125 295 351x5

 )

q5,1(x ) = −27 720(283 050x2
 + 266 977x5

 )

q5,2(x ) = 4(1919 325 600x2
 + 481 897 921x5

 )

q5,3(x ) = 9240(8550x2
 − 60 997x5

 )

q5,4(x ) = −(6624 900x2
 + 73 769x5

 )

(57e)

q6,0(x ) = 5850(318 120 + 33 314 840x3
 + 15 814 949x6

 )

q6,1(x ) = −10(1491 919 000 + 63 787 753 000x3
 + 10 704 688 123x6

 )

q6,2(x ) = −2600(75 240 − 48 704 080x3
 − 27 746 557x6

 )

q6,3(x ) = 35(13 413 400 − 2239 211 400x3
 − 382 250 049x6

 )

q6,4(x ) = 650(3960 − 886 040x3
 + 4013 887x6

 )

q6,5(x ) = −(1744 600 − 16 495 400x3
 − 93 617x6

 ).

(57f)

It should be noted that the asymptotic expansions (25) for the Regge poles ν (ka)

of the circular cylinder are limiting cases of the expansions (56). Indeed, in the limit
ξ0 → ∞, we have cosh ξ0 ∼ sinh ξ0 ∼ 1

2 exp ξ0. Then, by putting ka = (kc/2) exp ξ0

and ν (ka) = kcb (kc) into equation (56) we recover equation (25).

3.4. Asymptotic expansions for resonances

We shall now determine asymptotic expansions for the resonances of the elliptic cylinder. We
have to solve the four equations c′

 (π/2) = 0, s (π/2) = 0, c (π/2) = 0 and s ′
 (π/2) = 0,

providing the resonances associated, respectively, with the four representations A1, A2, B1 and
B2. With this aim in mind, we use the WKB expansions (D9)–(D12), where we have taken
η = π/2 and b = b . The four conditions for resonance then reduce to

exp [2i: (kc)] = ±
[

1 − 2Y1(π/2, b )

kc
+ O

kc→∞

(
1

(kc)2

)]
(58)

where the upper (respectively, the lower) sign corresponds to the A1 and A2 resonances
(respectively, the B1 and B2 resonances). Here,

: (kc) = kc

∫ π/2

0

(
b2
 − cos2 η

)1/2
dη = kc

√
b2
 − 1E

[
1/(1 − b2

 )
]

(59)

and

Y1(π/2, b ) =
(
1 − 2b2

 

)
E
[
1/(1 − b2

 )
]

+ 2b2
 K

[
1/(1 − b2

 )
]

24b2
 

√
1 − b2

 

(60)

where K(1/(1 − b2
 )) and E(1/(1 − b2

 )) are complete elliptic integrals of the first and second
kinds, respectively, [2]. Finally, the conditions for resonance (58) can be written as

: (kc) = nπ

2
− Y1(π/2, b )

ikc
+ O

kc→∞

(
1

(kc)2

)
(61)

with n ∈ N
∗. The A1 and A2 resonances (respectively, the B1 and B2 resonances) correspond

to n even (respectively, to n odd).
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By taking for b (kc) its asymptotic expansion (56), we can solve (61) perturbatively, and
we obtain

(kc)n, = π

2Ẽ(ξ0)
n +

eiπ/3π1/3x K̃(ξ0)

22/3Ẽ4/3(ξ0) (cosh ξ0 sinh ξ0)
1/3 n

1/3

+
e2iπ/3x2

 Q2(ξ0, x )

21/3π1/360Ẽ5/3(ξ0) (cosh ξ0 sinh ξ0)
5/3

n−1/3

+
Q3(ξ0, x )

8400πẼ2(ξ0) (cosh ξ0 sinh ξ0)
3 n

−1

+
eiπ/3x Q4(ξ0, x )

22/3π5/34536 000Ẽ7/3(ξ0) (cosh ξ0 sinh ξ0)
13/3 n

−5/3

+
e2iπ/3x2

 Q5(ξ0, x )

21/3π7/341 912 640 000Ẽ8/3(ξ0) (cosh ξ0 sinh ξ0)
17/3 n

−7/3 + O
n→+∞

(
n−3

)
(62)

with

Q2(ξ0, x ) = 15 sinh 2ξ0Ẽ
2(ξ0) − 16 cosh 2ξ0Ẽ(ξ0)K̃(ξ0) + 10 sinh 2ξ0K̃

2(ξ0) (63a)

Q3(ξ0, x ) = −(175 + 140x3
 ) sinh 4ξ0Ẽ

3(ξ0)

+
[−745 + 433x3

 + (205 + 143x3
 ) cosh 4ξ0

]
K̃(ξ0)Ẽ

2(ξ0) (63b)

Q4(ξ0, x ) = −45
[
21 540 + 3631x3

 +
(
1740 − 239x3

 

)
cosh 4ξ0

]
sinh 2ξ0Ẽ

4(ξ0)

−4
[
278 415 − 95 054x3

 − (
37 935 − 3406x3

 

)
cosh 4ξ0

]
cosh 2ξ0Ẽ

3(ξ0)K̃(ξ0)

+60
[
4470 − 2227x3

 − (
1230 − 563x3

 

)
cosh 4ξ0

]
sinh 2ξ0Ẽ

2(ξ0)K̃
2(ξ0)

−67 200x3
 cosh 2ξ0 (sinh 2ξ0)

2 Ẽ(ξ0)K̃
3(ξ0) + 14 000x3

 (sinh 2ξ0)
3 K̃4(ξ0)

(63c)

Q5(ξ0, x ) = −4620
[
2000 025 + 127 304x3

 + 23
(
225 − 632x3

 

)
cosh 4ξ0

]
sinh 4ξ0Ẽ

5(ξ0)

+
[−3

(
4569 434 850 − 493 885 289x3

 

)
+4
(
20 901 150 + 314 044 919x3

 

)
cosh 4ξ0

+
(
49 071 150 − 77 024 791x3

 

)
cosh 8ξ0

]
Ẽ4(ξ0)K̃(ξ0)

+6160
[
425 925 − 121 456x3

 − (
22 725 − 21 104x3

 

)
cosh 4ξ0

]
× sinh 4ξ0Ẽ

3(ξ0)K̃
2(ξ0)

+184 800
[
2235 − 753x3

 

(
615 − 817x3

 

)
cosh 4ξ0

]
(sinh 2ξ0)

2 Ẽ2(ξ0)K̃
3(ξ0)

+137 984 000x3
 cosh 2ξ0 (sinh 2ξ0)

3 Ẽ(ξ0)K̃
4(ξ0)

−21 560 000x3
 (sinh 2ξ0)

4 K̃5(ξ0). (63d)

In the previous formula, we have defined

K̃(ξ0) = cosh ξ0K

(
− 1

sinh2 ξ0

)
and Ẽ(ξ0) = sinh ξ0E

(
− 1

sinh2 ξ0

)
. (64)

By considering the limit ξ0 → +∞ and then by putting (ka)n, = ((kc)n, /2) exp ξ0 into
(62), we recover expansions (27) which provide the resonances of the circular cylinder.
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3.5. Exponentially improved asymptotic expansions for resonances

The splitting up of resonances, emphasized in subsection 3.1, does not appear in the expansions
(62). In fact, even by considering higher orders in the WKB expansions of the functions c(η, b)
and s(η, b), it is not possible to display such a phenomenon. Perturbation theory fails to provide
this splitting because it corresponds to an exponentially small term which lies beyond all orders
of the WKB expansions and can be captured only by taking Stokes’ phenomenon carefully
into account [23]. With this aim in mind, the hyperasymptotic treatment, developed by Dingle
[22], and more recently by Berry and Howls [24], and which is based on Borel summation
and on Dingle’s resurgence formula, could be helpful. However, we prefer to make use of
the uniform asymptotic expansions for the functions c(η, b), s(η, b), c′(η, b) and s ′(η, b).
Furthermore, in order to simplify the notation, we intensively use the symbol ≈, instead of
rigorous mathematical symbols.

The conditions for resonance c′
 (π/2) = 0, s (π/2) = 0, c (π/2) = 0 and s ′

 (π/2) = 0,
written in terms of the uniform asymptotic expansions (C30)–(C33), reduce, respectively, to

Ai′
(
(kc)2/3ζ(0)

)
Ai′

(
e2iπ/3(kc)2/3ζ(π/2)

) ≈ Ai′
(
e2iπ/3(kc)2/3ζ(0)

)
Ai′

(
(kc)2/3ζ(π/2)

)
(65a)

Ai
(
(kc)2/3ζ(0)

)
Ai
(
e2iπ/3(kc)2/3ζ(π/2)

) ≈ Ai
(
e2iπ/3(kc)2/3ζ(0)

)
Ai
(
(kc)2/3ζ(π/2)

)
(65b)

Ai′
(
(kc)2/3ζ(0)

)
Ai
(
e2iπ/3(kc)2/3ζ(π/2)

) ≈ e2iπ/3Ai′
(
e2iπ/3(kc)2/3ζ(0)

)
Ai
(
(kc)2/3ζ(π/2)

)
(65c)

Ai
(
(kc)2/3ζ(0)

)
e2iπ/3Ai′

(
e2iπ/3(kc)2/3ζ(π/2)

)
≈ Ai

(
e2iπ/3(kc)2/3ζ(0)

)
Ai′

(
(kc)2/3ζ(π/2)

)
. (65d)

In the previous equations, ζ(η) is defined by the relation (C20). In order to express these
equations in a simpler way, we can use the asymptotic behaviour of the Airy functions. For
z = (kc)2/3ζ(0), z = (kc)2/3ζ(π/2) and z = e2iπ/3(kc)2/3ζ(π/2), we shall write

Ai(z) ≈ 1

2
√
π
z−1/4 exp

(− 2
3z

3/2
)

(66)

and

Ai′(z) ≈ − 1

2
√
π
z1/4 exp

(− 2
3z

3/2
)

(67)

because | arg z| < 2π/3, while for z = e2iπ/3(kc)2/3ζ(0), we shall use

Ai(z) ≈ 1

2
√
π
z−1/4

[
exp

(− 2
3z

3/2
)

+ i exp
(

2
3z

3/2
)]

(68)

and

Ai′(z) ≈ − 1

2
√
π
z1/4

[
exp

(− 2
3z

3/2
)− i exp

(
2
3z

3/2
)]

(69)

because z lies beyond the Stokes line arg z = 2π/3. Now we substitute the asymptotic
expansions (66)–(69) in equations (65). By noting that the function : (kc), already defined
by (59), can also be expressed from (C20) as : (kc) = − 2

3 ikc[ζ(0)3/2 −ζ(π/2)3/2], we obtain

exp [2iφ (kc)] ≈ ±1 + i exp
[− 4

3kcζ(π/2)3/2] (70a)
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where the upper (respectively, the lower) sign corresponds to the A1 (respectively, the B1)
equation, and

exp [2iφ (kc)] ≈ ±1 − i exp
[− 4

3kcζ(π/2)3/2] (70b)

where the upper (respectively, the lower) sign corresponds to the A2 (respectively, the B2)
equation.

Finally, from equations (70), the condition for resonance (61) is exponentially improved
and reads

: (kc) = nπ

2
− Y1(π/2, b )

ikc
+ · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸

higher orders in 1/(kc)

± 1
2 (−1)n exp

[− 4
3kcζ(π/2)3/2]︸ ︷︷ ︸

term lying beyond all orders

.

(71)

with n ∈ N
∗.

Now, we have to solve equation (71). Let us denote its solutions by (k̃c)n, . Each (k̃c)n, 
can be sought close to the corresponding solution (kc)n, of equation (61). By expanding
: 

(
(k̃c)n, 

)
in Taylor series about (kc)n, , we obtain

(k̃c)n, = (kc)n, ± (−1)n

2 (d: /dkc)(kc)n, 
exp

[− 4
3 (kc)n, ζ(π/2)3/2]. (72)

The A1 (respectively, the A2) resonances correspond to n even and to the upper (respectively,
the lower) sign in equations (71) and (72). TheB1 (respectively, theB2) resonances correspond
to n odd and to the upper (respectively, the lower) sign in equations (71) and (72). Since b 
depends on kc, the differentiation of (59) can be carried out and leads to a series expansion
for d: /dkc. However, for numerical evaluations, the leading term(

d: 

dkc

)
(kc)n, 

≈ sinh ξ0E

(
− 1

sinh2 ξ0

)
= Ẽ(ξ0) (73)

provides sufficiently accurate results in most configurations for ξ0 and (kc)n, .

Table 3. A1 and A2 resonances for ξ0 = 1.

n,  kc
(A1)
n, kc

(A2)
n, 

8, 1 4.327 498 712 − 2.019 572 915i 4.327 498 538 − 2.019 572 709i Exact
4.327 463 148 − 2.019 171 483i 4.327 462 990 − 2.019 171 324i Asymptotic

10, 1 5.702 157 958 − 2.222 922 078i 5.702 157 955 − 2.222 922 069i Exact
5.702 122 958 − 2.222 673 723i 5.702 122 955 − 2.222 673 713i Asymptotic

Table 4. B1 and B2 resonances for ξ0 = 1.

n,  kc
(B1)
n, kc

(B2)
n, 

7, 1 3.644 907 129 − 1.903 103 239i 3.644 906 212 − 1.903 102 585i Exact
3.644 878 040 − 1.902 570 682i 3.644 877 138 − 1.902 570 130i Asymptotic

9, 1 5.013 419 221 − 2.125 489 923i 5.013 419 197 − 2.125 489 881i Exact
5.013 382 779 − 2.125 178 031i 5.013 382 754 − 2.125 177 990i Asymptotic
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Table 5. Splitting of resonances for ξ0 = 1.

Exact Asymptotic

n,  ln
∣∣Re(δkcn, )

∣∣ ln
∣∣Im(δkcn, )

∣∣ ln
∣∣Re(δkcn, )

∣∣ ln
∣∣Im(δkcn, )

∣∣
7, 1 −13.902 −14.240 −13.919 −14.409
8, 1 −15.564 −15.395 −15.664 −15.651
9, 1 −17.550 −16.967 −17.497 −17.017

10, 1 −19.575 −18.426 −19.480 −18.453

The asymptotic expansion (72) gives an even better approximation when n and ξ0 are
large. In tables 3 and 4 we present the exact values and exponentially improved asymptotic
approximations of resonances (k̃c)n, for ξ0 = 1,  = 1 and for various n. A good agreement
is found, even though a discrepancy appears in the last decimal places. It should be noted that
this discrepancy is due to the perturbative part of the asymptotic expansion. A better agreement
could be obtained by improving the asymptotic expansion (62) (by looking for higher-order
terms in n−3, n−11/3, n−13/3, . . .). In table 5, the asymptotic splitting

δkcn, = (−1)n

(d: /dkc)(kc)n, 
exp

[− 4
3 (kc)n, ζ(π/2)3/2] (74)

is compared with the exact one and a very good agreement is displayed.

4. Conclusion and perspectives

This paper could be extended in several directions.

• The uniform asymptotic expansions obtained for Mathieu and modified Mathieu functions
could be used to construct uniform approximations for the scattering amplitude in terms
of Fock or generalized Fock functions [29]. With this aim in mind, the uniform theory of
diffraction (see [30] for a pedagogical introduction) developed by Pathak [31] for convex
cylinders could be very useful.

• The method developed here could be extended to determine semiclassically the eigenvalues
of the elliptic quantum billiard. Such considerations would greatly improve the results
obtained from EBK quantization [15–17]. Furthermore, they would make the numerical
search for the exact eigenvalues easier by providing starting points for the numerical
algorithms.

• More generally, our method could be applied in the context of three-dimensional billiards
or scatterers of spheroidal and related shapes. In these cases, the splitting up of resonances
is a little more complex because it is associated with the breaking of the O(3) symmetry
of the sphere.

Furthermore, it would be also interesting to observe experimentally the splitting up of
resonances in acoustics or in electromagnetism by studying scattering of ultrasonic waves
from elastic elliptic cylinders, or scattering of microwaves from conducting or dielectric elliptic
cylinders.
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Appendix A. Orthonormalization relations for the radial modes

The construction of the diffracted Green functions (for the circular and elliptic cylinders)
involves the orthogonality properties of the radial modes. These properties are obtained by
using the radial parts of the Helmholtz equation and the asymptotic behaviour of the outgoing
solutions.

Appendix A.1. The case of the circular cylinder

We must evaluate the integral∫ +∞

a

H (1)
ν 

(kρ)H (1)
νm

(kρ)
dρ

ρ
(A1)

where ν and νm are two Regge poles. Let us first consider the more general integral∫ +∞

a

H (1)
ν 

(kρ)H (1)
ν (kρ)

dρ

ρ
(A2)

where ν is a Regge pole while ν is arbitrary. From Bessel’s equation (7), we obtain∫ +∞

a

H (1)
ν 

(kρ)H (1)
ν (kρ)

dρ

ρ
= 1

ν2
 − ν2

[
ρH(1)

ν (kρ)
dH(1)

ν 

dρ
− ρH(1)

ν 
(kρ)

dH(1)
ν

dρ

]+∞

a

. (A3)

By using the asymptotic behaviour of the Hankel function of the first kind, it can be shown
that the contributions for ρ → +∞ cancel each other. Then, since H(1)

ν 
(ka) = 0, it yields∫ +∞

a

H (1)
ν 

(kρ)H (1)
ν (kρ)

dρ

ρ
= aH(1)

ν (ka)

ν2 − ν2
 

(
dH(1)

ν 
(kρ)

dρ

)
ρ=a

. (A4)

When ν = νm is a Regge pole, the right-hand side of (A4) simplifies. If m �=  , it vanishes.
If m =  , the limit ν → ν in (A4) can be carried out by writing ν = ν + ε with ε → 0. It
follows that ∫ +∞

a

[
H(1)

ν 
(kρ)

]2 dρ

ρ
= lim

ε→0

aH
(1)
ν +ε(ka)

2εν 

(
dH(1)

ν 
(kρ)

dρ

)
ρ=a

. (A5)

By making use of the expansion

H(1)
ν +ε(ka) = H(1)

ν 
(ka)︸ ︷︷ ︸

=0

+ε

(
∂H(1)

ν (ka)

∂ν

)
ν=ν 

+ O
ε→0

(ε2) (A6)

we can write ∫ +∞

a

[
H(1)

ν 
(kρ)

]2 dρ

ρ
= a

2ν 

(
∂H(1)

ν (ka)

∂ν

)
ν=ν 

(
dH(1)

ν 
(kρ)

dρ

)
ρ=a

. (A7)

Finally, we combine the cases  = m and  �= m in the orthonormalization relation∫ ∞

a

H (1)
νm

(kρ)H (1)
ν 

(kρ)
dρ

ρ
= N (ka)δ m (A8)

where

N (ka) = a

2ν 

(
∂H(1)

ν (ka)

∂ν

)
ν=ν 

(
dH(1)

ν 
(kρ)

dρ

)
ρ=a

. (A9)
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An alternative expression for (A9) can be found by using the Wronskian [2]

W
[
H(1)

ν (x),H (2)
ν (x)

] = H(1)
ν (x)

dH(2)
ν (x)

dx
− dH(1)

ν (x)

dx
H(2)

ν (x) = − 4i

πx
. (A10)

Indeed, if x = ka and ν is a Regge pole, we have the relation

aH(2)
ν 

(ka)

(
dH(1)

ν 
(kρ)

dρ

)
ρ=a

= 4i

π
(A11)

thus

N (ka) = 2i

πν H
(2)
ν (ka)

(
∂H(1)

ν (ka)

∂ν

)
ν=ν 

. (A12)

Appendix A.2. The case of the elliptic cylinder

Consider now the orthonormalization relation for the solutions U(1)
 (ξ) of the radial problem in

the case of the elliptic cylinder. The calculation, involving the modified Mathieu equation (35)
as well as the outgoing behaviour (C14), is very similar to the previous one and the final result
is simply given by∫ +∞

ξ0

U
(1)
 (ξ) U(1)

m (ξ) dξ = N (ξ0)δ m (A13)

with

N (ξ0) = 1

2(kc)2b 

(
dU(1)

 

dξ

)
ξ=ξ0

(
∂U(1)(ξ0, b)

∂b

)
b=b 

. (A14)

An alternative expression for N (ξ0) involving the incoming solution U
(2)
 (ξ) of the

modified Mathieu equation can be found. Indeed, let us consider the Wronskian

W
[
U(1)(ξ), U(2)(ξ)

] = U(1)(ξ)
dU(2)

dξ
− dU(1)

dξ
U(2)(ξ). (A15)

From equation (35), we have dW
[
U(1)(ξ), U(2)(ξ)

]
/dξ = 0. The Wronskian is therefore a

constant which can be determined by considering the limiting case ξ → ∞. From (C14) and
(C15) and by taking into account the fact that limξ→∞ tanh ξ = 1, we obtain

W
[
U(1)(ξ), U(2)(ξ)

] = −e−iπ/6(kc)2/3

2π
. (A16)

If ξ = ξ0 and b = b , equation (A15) then reduces to

U
(2)
 (ξ0)

(
dU(1)

 

dξ

)
ξ=ξ0

= e−iπ/6(kc)2/3

2π
. (A17)

From (A14) and (A17), we obtain

N (ξ0) = e−iπ/6

4π(kc)4/3b U
(2)
 (ξ0)

(
∂U(1)(ξ0)

∂b

)
b=b 

. (A18)
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Appendix B. Some symmetry properties of the solutions of the ordinary Mathieu
equation

In order to expand the diffracted Green function over the four irreducible representations A1,
A2, B1 and B2, we need certain symmetry properties of the solutions of the Mathieu equation.
They are obtained from the symmetries of the Mathieu equation.

Let us consider the two linearly independent solutions c(η, b) and s(η, b) of the ordinary
Mathieu equation (36), satisfying the initial conditions

c(0, b) = 1 c′(0, b) = 0

s(0, b) = 0 s ′(0, b) = 1
(B1)

and their Wronskian

W [c(η, b), s(η, b)] = c(η, b) s ′(η, b) − c′(η, b) s(η, b). (B2)

From equation (36), we obtain dW [c(η, b), s(η, b)] /dη = 0, so the Wronskian is a constant.
It is determined from (B1) and reduces to

W [c(η, b), s(η, b)] = 1. (B3)

Since the Mathieu equation (36) is invariant under the transformationsη → −η, η → π+η
and η → π − η, the functions c(−η, b), c(π + η, b) and c(π − η, b) as well as the functions
s(−η, b), s(π + η, b) and s(π − η, b) are also solutions of (36), and hence can be written as
linear combinations of c(η, b) and s(η, b). By differentiating with respect to η these linear
combinations and then by taking into account (B1), we establish the following properties:

c(π ± η, b) = c(π, b)c(η, b) ± c′(π, b)s(η, b)

s(π ± η, b) = s(π, b)c(η, b) ± s ′(π, b)s(η, b)

c′(π ± η, b) = c′(π, b)s ′(η, b) ± c(π, b)c′(η, b)

s ′(π ± η, b) = s ′(π, b)s ′(η, b) ± s(π, b)c′(η, b).

(B4)

By substituting the constant Wronskian’s property (B3) into (B4) we obtain, among other
relations,

c(π, b) = s ′(π, b) = c(π/2, b)s ′(π/2, b) + c′(π/2, b)s(π/2, b)

= 1 + 2c′(π/2, b)s(π/2, b) = 2c(π/2, b)s ′(π/2, b) − 1

c′(π, b) = 2c′(π/2, b)c(π/2, b)

s(π, b) = 2s(π/2, b)s ′(π/2, b).

(B5)

Appendix C. Uniform asymptotic expansions for the functions arising in the theory of
diffraction by an elliptic cylinder

Uniform asymptotic expansions for the functions involved in the diffracted Green function of
the elliptic cylinder permits us to determine asymptotic expansions for Regge poles, and to
capture the exponentially small terms lying beyond all orders in the asymptotic expansions
for resonances. The Langer–Olver method [25] is recalled here briefly, and then applied to
Mathieu and modified Mathieu equations.
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Appendix C.1. The Langer–Olver method: generalities

Any solution of the equation

d2W

dz2
= [

λ2p(z) + q(z)
]
W(z) (C1)

where λ is a large parameter, can be represented by the series

W(z) = e−iπ/2ζ 1/4 [p(z)]−1/4

{
P(ζ )

∞∑
s=0

As(ζ )

λ2s
+

dP

dζ

∞∑
s=0

Bs(ζ )

λ2(s+1)

}
. (C2)

If z∗ is a simple zero of the function p(z), the variable ζ is defined from

2
3ζ

3/2 = −
∫ z

z∗
[p(u)]1/2 du (C3)

and P(ζ ) is a solution of the Airy equation

d2P

dζ 2
= λ2ζP (ζ ). (C4)

The sequences of coefficients As(ζ ) and Bs(ζ ) are defined, up to integration constants, by the
relations

A0(ζ ) = 1 (C5)

Bs(ζ ) = 1
2ζ

−1/2
∫ ζ

0
t−1/2

[
f (t)As(t) − d2As

dt2

]
dt (C6)

As+1(ζ ) = −1

2

dBs

dζ
+

1

2

∫ ζ

0
f (t)Bs(t) dt (C7)

with

f (ζ ) = 5

16ζ 2
− 5ζ

16

[
p′(z)

]2

[p(z)]3 +
ζ

4

p′′(z)
[p(z)]2 +

ζq(z)

p(z)
. (C8)

Appendix C.2. Application of the Langer–Olver method to the solutions of the modified
Mathieu equation

The modified Mathieu equation (35) can be obviously written in the form (C1) by taking
λ = kc, p(ξ) = b2 − cosh2 ξ and q(ξ) = 0. Consequently, for large kc, we can obtain two
linearly independent solutions of (35) such as

U(1)(ξ) = e−iπ/2ζ 1/4
(
b2 − cosh2 ξ

)−1/4

×
{

Ai
[
e2iπ/3(kc)2/3ζ

] ∞∑
s=0

As(ζ )

(kc)2s
+

e2iπ/3Ai′
[
e2iπ/3(kc)2/3ζ

]
(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(C9)

and

U(2)(ξ) = eiπ/2ζ 1/4
(
b2 − cosh2 ξ

)−1/4

×
{

Ai
[
e−2iπ/3(kc)2/3ζ

] ∞∑
s=0

As(ζ )

(kc)2s
+

e−2iπ/3Ai′
[
e−2iπ/3(kc)2/3ζ

]
(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(C10)
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where ζ is defined by

2
3ζ

3/2 = −
∫ ξ

arccosh b

(
b2 − cosh2 u

)1/2
du. (C11)

By using the asymptotic behaviour of the Airy function [2] for ξ → +∞ and the fact that

2
3ζ

3/2 ∼
ξ→+∞

i cosh ξ − i 1
2π
(
b2 − 1

2

)1/2
(C12)

we can show that U(1) is the outgoing solution of the modified Mathieu equation, while U(2)

is the incoming one. Furthermore, by letting

ν = kc
(
b2 − 1

2

)1/2
(C13)

as in (39), we obtain the first-order approximations

U(1)(ξ) ∼
ξ→+∞

(kc)−1/6

2
√
π

e−iπ/6(cosh ξ)−1/2 exp [i(kc cosh ξ − νπ/2 − π/4)] (C14)

for the outgoing function, and

U(2)(ξ) ∼
ξ→+∞

(kc)−1/6

2
√
π

eiπ/6(cosh ξ)−1/2 exp [−i(kc cosh ξ − νπ/2 − π/4)] (C15)

for the incoming one.
The coefficients As(ζ ) and Bs(ζ ) can be determined from the recurrence relations (C5)–

(C7). In fact, only A0(ζ ) and B0(ζ ) are needed in our work. The function f (ζ ) defined by
(C8) is given here by

f (ζ ) = 5

16ζ 2
− ζ

2

[
5

2

cosh2 ξ sinh2 ξ

(b2 − cosh2 ξ)3
+

cosh2 ξ + sinh2 ξ

(b2 − cosh2 ξ)2

]
(C16)

and permits us to evaluate B0(ζ ) from the recurrence relation (C6) by using the
relation (dξ/dζ ) [p(ξ)]1/2 = −ζ 1/2 which follows from differentiation of (C3). We find

B0(ζ ) = − 5

48ζ 2
+

√
b2 − 1

12
√
ζ

[
iF
(
iξ
∣∣1/(1 − b2)

)
(b2 − 1)

− i(2b4 − 3b2 + 1)E
(
iξ
∣∣(1/1 − b2)

)
2b2(b2 − 1)2

+
(14b4 − 14b2 + 1) sinh 2ξ +

(
b2 − 1

2

)
sinh 4ξ

8b2(b2 − 1)2(b2 − cosh2 ξ)3/2

]
(C17)

where F and E denote the elliptic integrals of the first and second kinds, respectively, [2].

Appendix C.3. Application of the Langer–Olver method to the ordinary Mathieu equation

The ordinary Mathieu equation (36) can be written in the form (C1) simply by taking λ = kc,
p(η) = −(b2 − cos2 η) and q(η) = 0. Thus, for large kc, the Langer–Olver method permits
us to obtain two linearly independent solutions of (36) in the form

V−(η, b) = e−iπ/2ζ 1/4
(
b2 − cos2 η

)−1/4

×
{

Ai
[
e2iπ/3(kc)2/3ζ

] ∞∑
s=0

As(ζ )

(kc)2s
+

e2iπ/3Ai′
[
e2iπ/3(kc)2/3ζ

]
(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(C18)
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and

V+(η, b) = e−iπ/2ζ 1/4
(
b2 − cos2 η

)−1/4

×
{

Ai
[
(kc)2/3ζ

] ∞∑
s=0

As(ζ )

(kc)2s
+

Ai′
[
(kc)2/3ζ

]
(kc)4/3

∞∑
s=0

Bs(ζ )

(kc)2s

}
(C19)

where ζ is defined by

2
3 [ζ(η)]3/2 = −i

∫ η

arccos b

(
b2 − cos2 v

)1/2
dv. (C20)

The Wronskian

W
[
V−(η), V+(η)

] = V−(η)V ′
+(η) − V ′

−(η)V+(η) (C21)

does not depend on η. Indeed, from equation (36), we obtain dW
[
V−(η), V+(η)

]
/dη = 0.

Furthermore, it can be evaluated by taking the limit η → arccos b and then by using
W
[
Ai
(
e2iπ/3z

)
,Ai(z)

] = −e−iπ/6/(2π) [2]. We find

W
[
V−(η), V+(η)

] = e−2iπ/3(kc)2/3

2π
. (C22)

We search the two functions c(η, b) and s(η, b), subject to the conditions (B1), as the
linear combinations

c(η, b) = αcV−(η, b) + βcV+(η, b)

s(η, b) = αsV−(η, b) + βsV+(η, b).
(C23)

The determination of the coefficients in the previous linear combinations leads to

αc = 2πe2iπ/3

(kc)2/3
V ′

+(0) βc = −2πe2iπ/3

(kc)2/3
V ′

−(0) (C24)

and

αs = −2πe2iπ/3

(kc)2/3
V+(0) βs = 2πe2iπ/3

(kc)2/3
V−(0). (C25)

In fact, in order to exponentially improve the asymptotic expansion for the resonances of
the elliptic cylinder, we only need the leading contributions

V−(η, b) = e−iπ/2ζ 1/4
(
b2 − cos2 η

)−1/4
Ai
[
e2iπ/3(kc)2/3ζ

] (
1 + O

kc→+∞

(
1

kc

))
(C26)

and

V+(η, b) = e−iπ/2ζ 1/4
(
b2 − cos2 η

)−1/4
Ai
[
(kc)2/3ζ

] (
1 + O

kc→+∞

(
1

kc

))
. (C27)

According to the relation dζ/dη = e−iπ/2ζ−1/2
(
b2 − cos2 η

)1/2
, a direct differentiation of

(C26) and (C27) yields

V ′
−(η, b) = −e2iπ/3(kc)2/3ζ−1/4

(
b2 − cos2 η

)1/4
Ai′

(
e2iπ/3(kc)2/3ζ

) (
1 + O

kc→+∞

(
1

kc

))
(C28)
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and

V ′
+(η, b) = −(kc)2/3ζ−1/4

(
b2 − cos2 η

)1/4
Ai′

(
(kc)2/3ζ

) (
1 + O

kc→+∞

(
1

kc

))
. (C29)

From equations (C24) and (C25), we finally obtain

c(η, b) = −2πeiπ/6ζ(0)−1/4ζ(η)1/4 (b2 − 1
)1/4 (

b2 − cos2 η
)−1/4

×[Ai′
(
(kc)2/3ζ(0)

)
Ai
(
e2iπ/3(kc)2/3ζ(η)

)
−e2iπ/3Ai′

(
e2iπ/3(kc)2/3ζ(0)

)
Ai
(
(kc)2/3ζ(η)

)] (
1 + O

kc→+∞

(
1

kc

))
(C30)

and

s(η, b) = −2πe−iπ/3(kc)−2/3ζ(0)1/4ζ(η)1/4 (b2 − 1
)−1/4 (

b2 − cos2 η
)−1/4

×[Ai
(
(kc)2/3ζ(0)

)
Ai
(
e2iπ/3(kc)2/3ζ(η)

)
−Ai

(
e2iπ/3(kc)2/3ζ(0)

)
Ai
(
(kc)2/3ζ(η)

)] (
1 + O

kc→+∞

(
1

kc

))
(C31)

as well as

c′(η, b) = 2πe4iπ/3(kc)2/3ζ(0)−1/4ζ(η)−1/4 (b2 − 1
)1/4 (

b2 − cos2 η
)1/4

×[Ai′
(
(kc)2/3ζ(0)

)
Ai′

(
e2iπ/3(kc)2/3ζ(η)

)
−Ai′

(
e2iπ/3(kc)2/3ζ(0)

)
Ai′

(
(kc)2/3ζ(η)

)] (
1 + O

kc→+∞

(
1

kc

))
(C32)

and

s ′(η, b) = 2πeiπ/6ζ(0)1/4ζ(η)−1/4 (b2 − 1
)−1/4 (

b2 − cos2 η
)1/4

×[Ai
(
(kc)2/3ζ(0)

)
e2iπ/3Ai′

(
e2iπ/3(kc)2/3ζ(η)

)
−Ai

(
e2iπ/3(kc)2/3ζ(0)

)
Ai′

(
(kc)2/3ζ(η)

)] (
1 + O

kc→+∞

(
1

kc

))
. (C33)

Appendix D. WKB expansions for the solutions of the ordinary Mathieu equation

In order to solve asymptotically the transcendental equations c′
 (π/2) = 0, s (π/2) = 0,

c (π/2) = 0 and s ′
 (π/2) = 0 providing the resonances associated, respectively, with the

representations A1, A2, B1 and B2, we need to construct the WKB expansions for the functions
c(η, b), s(η, b), c′(η, b) and s ′(η, b).

Appendix D.1. The WKB method: generalities [22]

Two linearly independent solutions of the equation

d2V

dz2
= λ2R2(z)V (z) (D1)

where λ is a large parameter, can be represented by the WKB expansions

V ±(z) = R−1/2(z) exp

[
±λ

∫ z

a

R(z) dz

] +∞∑
n=0

Yn(z)

(±λ)n
(D2)
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where

Yn+1 = − 1

2R
Y ′
n +

∫ z

a

P (z)Yn(z) dz + Cn+1 and Y0 = C0. (D3)

The function P(z) is given by

P(z) = R′′(z)
4R2(z)

− 3R′2(z)
8R3(z)

(D4)

while the lower limit a and the Cn for n � 0 are arbitrary constants. It is important to note that
any change in the arbitrary constants a and Cn corresponds to a change in the normalization
of the solutions V ±(z).

Appendix D.2. Application of the WKB method to the ordinary Mathieu equation

The Mathieu equation (36) can be put into the form (D1) by taking λ = kc and

R(η, b) = i
(
b2 − cos2 η

)1/2
(D5)

and can be solved by using the WKB method. P(η, b), defined by (D4), is given here by

P(η, b) = 2
(
b2 cos2 η − b2 sin2 η − cos4 η

)− 3 cos2 η sin2 η

8i
(
b2 − cos2 η

)5/2
. (D6)

By limiting the WKB expansions to the first order in 1/kc, and by taking arbitrarily a = 0,
C0 = 1, and Cn = 0 for n � 1, we obtain

V ±(η, b) = R−1/2(η, b) exp

[
±kc

∫ η

0
R(η′, b) dη′

](
1 ± Y1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))
(D7)

with

Y1(η, b) =
∫ η

0
P(η′, b) dη′. (D8)

The WKB expansions for the functions c(η, b) and s(η, b) which satisfy the Mathieu
equation (36) and the initial conditions (B1) can then be constructed as linear combinations
of the expansions V +(η, b) and V −(η, b). We find

c(η, b) = 1
2R(0, b)1/2R(η, b)−1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Y1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))
+ exp

[
−kc

∫ η

0
R(η′, b) dη′

](
1 − Y1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))}
(D9)

and

s(η, b) = 1

2kc
R(0, b)−1/2R(η, b)−1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Y1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))
− exp

[
−kc

∫ η

0
R(η′, b) dη′

](
1 − Y1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))}
. (D10)
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We then deduce for c′(η, b) and s ′(η, b) the following expansions:

c′(η, b) = 1
2kcR(0, b)1/2R(η, b)1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Ỹ1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))

− exp

[
−kc

∫ η

0
R(η′, b) dη′

](
1 − Ỹ1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))}
(D11)

and

s ′(η, b) = 1
2R(0, b)−1/2R(η, b)1/2

×
{

exp

[
kc

∫ η

0
R(η′, b) dη′

](
1 +

Ỹ1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))

+ exp

[
−kc

∫ η

0
R(η′, b) dη′

](
1 − Ỹ1(η, b)

kc
+ O

kc→∞

(
1

(kc)2

))}
(D12)

with

Ỹ1(η, b) = Y1(η, b) − R′(η, b)
2R(η, b)2 . (D13)
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